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The kinetic approach to the study of gas flows with internal degrees of freedom has 
been relatively well elaborated [1-3]. It is useful to extend this approach to disperse 
media, since the number of practically important problems in this area is very extensive 
[4]. Phenomenological models for the study of disperse media with processes of vibrational 
relaxation in a gas, on the phase boundary, and inside solid aerosol particles were elabor- 
ated in [5-6], and with consideration of phase transitions in [7]. The kinetic model of 
suspension of matter in gas without internal degrees of freedom was investigated in [8]. 

Based on the rigorous asymptotic method in [2], equations of motion for suspension 
of matter in gas were derived in the present study in the case where the gas has one 
internal degree of freedom, vibrational, for example. The aerosol particles can also be 
vibrationally excited [5-7]. 

We will consider the conditions of streamline flow of particles are free-molecule, 
and the reaction of the gas molecules with the particles is described by a mirror-diffuse 
Maxwellian scheme. We will neglect the random movement of solid particles. Then the dis- 
tribution functions of the gas molecules fg(t, r, Cg, E N) in the absence of external forces 
will satisfy the following kinetic equation 

afg ~ afg_ ,z ~ 
a--f + "~; ~F --  Jgg + Jgg + Igp, 

= E j' ifj ,l ee", .,':.; = lij  } ee'~ 4 ,  -- - , , , ) . , 'g  + 
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jg,e, =npr,~{(..~9 J' (gk)]gdk--~ j' (g'k)]g j' 8[g--(g'--2gk) k]dg'dl~}, 
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mg ~ EN } 
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Elastic jggel and inelastic jR in integrals of collisions of molecules with each other 

have the usual Boltzmann form, and the integrals of collisions of molecules with particles 
of finite radius have the form used in the kinetic theory of gases for studying boundary 
problems of the interaction with the surface [9]. In Eqs. (I), for simplification of the 
notation, the terms with rotational degrees of freedom are omitted. As a kinetic boundary 
condition, it is assumed that part (i - oi) of the molecules wihich fall on particles are 
reflected like a mirror, and the other part o i is initially adsorbed and then emerges on the 
surface with a Maxwell-Boltzmann distribution of translational and vibrational degrees of 
freedom at different temperatures T r and Tir [i0]. Coefficient o i can consist of different 
parts related to different mechanisms of relaxation on the surface. Each part can in princi- 
ple be determined by solving discrete quantum mechanical problems of the interaction with 
the surface, for example, problems of heterogeneous V-T relaxation [Ii] or resonance V-V 
exchange by quanta on the surface [6]. The kinetic equation for aerosol particles is 

Ofp O]p . eZ ~n 0"-~ -]- Cp "~ Jpp q-- Jpp q- Ipg. (2) 
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The reaction of the particles with the gas molecules only results in slow diffusion of the 
particles in the velocity space due to the large difference in masses, and for this reason, 
Ipg can be represented as [12] 

Ipg = ( a /O%)(K~/ / a%-  Fpg/p) 

~ (Fpg = mglgpdcg is the force acting on the particle from the gas molecules, and K is the 

tensor of the diffusion coefficients in the velocity space of the individual particle). 
Integral Jpp has the usual Boltzmann form if the random motion of the particles is taken into 

consideration. There is currently no kinetic description of the evolution of the intramolecu- 
lar vibrational energy in the particles, and obtaining the structure of jppln is an indepen- 

dent complex problem. Hence, the conditions of balance of energy fluxes were used in elab- 
orating the phenomenological models in [5, 6] and it was hypothesized that the vibrational 
energy inside the particles relaxes according to the Landau-Teller law. The basic attention 
in the present study is focused on investigating the conditions of flow determined by kinetic 
Eq. (i). We will convert this equation to the dimensionless form by assuming fg = fgn/U0 3, 

dk =dk~rp 2, g =gG , where g =%--u~, G ~ Iu--u~l, and u, Up are the average rates of the 
gas and particles. If the mean free path is I and the characteistic dimension of the problem 
is L, then after making it dimensionless, we obtain 

K + % = J ~  + ~Jgg + -~u [(1 - -  oO Jgv + o~J~;]. (3)  

The processes of vibrational relaxation in a gas are assumed to be slow, i.e., = ~ K [i, 2]. In Eq. 
(3), K = |/L is the Knudsen number, parameter Ku = r~u0((4/3)~rp3np)T (g0 =(4/3)~rp~np is[ the van 
der Weals number with respect to the particles) characterizes the reaction of the molecules 
with the aerosol particles. Actually, the value of Ku also has the meaning of the Knudsen 
number (u0T ~ L), but is determined based on the interaction of the gas molecules with the 
particles. Values of Ku m i are not of great interest, since on the characteristic scale 
of the problem, the molecules do not collide with the particles in general. For thisrea- 
son, they practically have the meaning of only Ku ~ 1 and Ku ~ I, which are different cases, 
since the basic integral operator changes in going from Ku ~ 1 to Ku ~ i. In the theory 
of multiatomic gases, the different asymptotics related to separation of small parameters 
are based on some system of separation of the collision integral. The individual terms 
of this integral correspond to different types of reaction of the molecules with each other. 
However, it is important that part of the collision integral corresponding to elastic colli- 
sions contains more binary invariants than the entire integral. As a result, the kinetic 
equation results in a more general solution [i, 2]. Division into individual groups (for 
example, J el, jg in, and J el, j in) according to some interactions is also possible in 

go~ g examine~.g gP the class problems It is important that the initial kinetic equation contain 
the sum of integrals of a different physical nature which do not result in any one formal 
procedure without loss of the essence of the phenomena examined and which have different 
systems of binary invariants. The case of K/Ku ~ i has its own restrictions. The expres- 
sion K/Ku ~ 1 is adequate to KnE 0 ~ I, where Kn = s is the Knudsen number determined with 
respect to the particle radius. If g0 ~ i, then it i~ necessary to consider the "constraint" 
of the medium investigated and it is not possible to neglect the pressure of the particles, 
since Pp/Pg = e0 [13]. In our case, e0 ~ i, and for this reason, in agreement with the 
above hypothesis, the condition of streamline flow of the particle should be free-molecule 
flow. We will look for the solution of Eq. (3) in the form of the series fg = fg(0) + 

Kf- (I) + ... (K << i). If Ku 6 1 and K/Ku ~ i, which occurs in problems of laser gas dynamics 
[6~, then regardless of the value of o i, jggel = 0 will be the basic integral operator. 
In the kinetic theory of gases, this corresponds to the so-called relaxation case [2], i.e., 
the comparatively rare collision of molecules with particles on gas dynamics time scales 
and distances. If these collisions become as frequent as the collisions of the molecules 
with each other, i.e., Ku << i, K/Ku ~ i, the basic integral operator changes, becoming 

j~ el + jgpel + jgpin = 0 (so-called equilibrium case in kinetic theory of gases_[2]). 
W~mwill successively examine these situations. 

I. K ~ i, Ku ~ i, a i ~ I. Substituting the series expansion of the distribution 
function fg with respect to the number K in Eq. (3), in the zero approximation we obtain 

_ jggel = 0. A two temperature Maxwell-Boltzmann distribution function is the solution of 

this equation [i] 
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If kinetic Eq. 

k--~;J exp[ ~ j e x p ( - - ~ ) .  

(3) in the zero approximation is 

os?) ~17) 
~-r + r - ~ -  - s ;~  - [(~ - ~ )  s ~  (/7))  + " , ~ i ;  (/~o)) ] = o 

( 4 )  

we will successively multiply by invariants i, meg, mCg2/2, E N of operator jggel, integrate 

with respect to the velocity space, and sum with respect to the internal energy space, for 
which a set of values of the harmonic oscillator energy with an infinite number of levels 
will subsequently be used, and we obtain a system of Euler hydrodynamic equations 

dp du dE Ou 
d-t + pVu ~ 0, p~? = --Vp + Fgp, -~  + kTg~{ = Qgv + Fgpu, (5) 

E = 3 kTg + eN' eN = ~ exp (-- EN/kTig)[(.~) exp ( -  

- ~N (r~g) - ~N (r~r) den ~N(T~) 8 N ( T ~ ) +  �9 
n - ~ -  ~ fig ~i 

_ __(Fgp=~)~megIgpdcg--strength Of interphase interaction, 

Qgp = (~N) S ( ~ § Ex) Igp dcg-- interphase heat exchange). 

The concrete expressions for Fgp and Qgp can be borrowed from the calculations for the stream- 
line flow of a sphere with free-molecule flow [14, 15]. The pulse accommodation coefficients 
should be understood as a i in the expressions for Fgp. The major possibility of V-T exchange 

on the surface complicates the calculation of the heat fluxes Qgp. The possibility of V-T 

transitions can be grossly taken into consideration by introducing additional acconmlodation 
coefficients [16]. The right part of the relaxation equation in system (5) contains terms 
which account for relaxation processes in the gas and on the surface. The corresponding 
vibrational relaxation times Tig, Ti* were determined in [2, 17]. The special case of sys- 
tem (5) for flow after a direct-shock wave of a vibrationally relaxing gas with particles 
"frozen" in it was examined in [17]. 

In a first approximation with respect to K, kinetic Eq. (3) is 

0/2) O/(o) 
- -  v , ~  _ 4 . ( / ( 2 ,  ) s~(§ ~ ~ ot  + , o ,  - ~ , , ~  j = s , , ( / ( ~ ' ) .  ( 6 )  

Substituting function (4) in (6) and excluding the partial derivatives with respect to time 
with (5), we obtain 

/(gO) l/mC: 5)OlnTg m ( - ~  Ou) (EN--eN'OlnTig 
t~2~ 2 - x - c ~ + ~  c~c~:~ + ~---7- ~ 

In tegra l  Igp(fg(~ can be represented in an expansion with respect to i r reducible  tensors" 

[ ) m . . . . . .  5)La+Cg(EN--eN)L4 + ] 
f gP Jig ] Lo § CgL1 § \2-~g 2 . . . .  

(7) 
where LI, L, L~, and the other coefficients are calculated by multiplying both parts of 
series (7) by the corresponding factor with subsequent integration with respect to the rate 
and sumamtion with respect to the internal energy space, but they are somewhat unwieldy. 
For example, 

4 r2~,/exp (-- [1~) 9 15 t 20--~)] n 5 5 ) 1  --., 

- rz = lb. (~ ~T2~Tg(U--UP)' '--~ ' ft. 
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The structural form of the distribution function of the first approximation is the same as 
in [18, 2]: 

--o-- 

= - - A I  (Y In  Tg - -  L ~  - -  A2 (V In  T~g - -  L~) - -  B : (Vu - -  L~ ) - -  G. 

Integral equations similar to those reported in [2, 19], but with consideration of the terms 
I~- (f (0)) responsible for heterogeneous processes, take place relative to unknowns At, A2 , 
~P 5 
.... The dissipative coefficients can be determined from the solution of these equations 
with the procedure described in detail in [2, 19]. In the case of the disperse medium exam- 
ined, these coefficients will apparently coincide with those obtained in [19] for a vibrational 
relaxing gas, since the structures of the basic integral operators coincide. The effect 
of the particles is only reflected in the structure of the flow terms. The heat flux and 
pressure tensor are written as 

I 8T~g 
(N) [k ~ "~-  

/ OTg _ OTig 

F = S ml 'c cTr: ( v ~  = - 

(I t, 1 i are thermal conductivity coefficients for translational and vibrational degrees of 
freedom [19], ~g is the shear viscosity coefficient). 

II. K ~ i, ~ ~ K, Ku ~ i, K/Ku ~ I. In this case, in the zero approximation 

+ = o,  ( 8 ) 

i.e., the effect of the particles is exercised on the scale of the mean free path of the 
molecules s This effect can be assessed, for example, by examining the problem of a shock 
wave in a disperse medium, for simplicity assuming that there is no relative motion between 
gas and particles. Then for the change in the temperature in the relaxation zone [17], 
we obtain 

dT T--T~ 
u = (o z-1) + (9) 

(Z-I = (~rp2np 9)-I = (e0V/rp)-I, ~a is the adsorption time, and o 0 = I0 Is cm-2). The degree 

of filling of the surface by adsorbed molecules is usually low and factor nv~a/O 0 can be 

neglected. If the temperature behind the wave front is T = Tg, the solution of Eq. (9) will 

be T(x) = T w + (Tg - T w) exp (-x/(aiLKu)). It follows that for x ~ I and o i ~ i, when T(x)= 

T w + (Tg - T w) exp (-K/Ku), in the case of K/Ku ~ i, the temperature of the gas T can differ 

from the value of Tg, only determined by the gaseous medium [4], by a finite value. The 
principal term of basic integral operator (8) is Igp, since it determines the equilibrium 
state between gas and particles. The so-called principle of duality [9], which is the analog 
of the principle of detailed balance in the kinetic theory of gases, but for collisions 
of molecules with the surface, also holds for integral Igp. This principle also holds in the 

presence of internal degrees of freedom [20]. Using the H theorem [18], it is possible 
to show that the H function of each term in (8) is less than or equal to zero. For arbitrary 
np and el, the condition is satisfied if Igp and jggel become zero. For diffuse reflection, 

Igp = 0 in the case where the distribution of the dropping molecules is locally Maxwellian 

with a temperature equal to the surface temperature T w = Tp [9], and for mirror reflection, 
in the absence of relative movement of the gas and particles. For this reason, for the 
zero-approximation distribution function, we will write 

This function also satisfies the conditions jggel = 0. 

Macroscopic parameters Tp, Tip, ... in the general case are determined with considera- 

tion of the "hydrodynamics" of the particles, i.e., a system of equations which follows 
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from kinetic Eq. (2). If the processes of vibrational relaxation inside and on the surface 
of isolated particles are frozen, complete equilibrium on hydrodynamic scales (~L) is estab- 
lished due to processes of V-T relaxation in the gas and on the surface of the particles. 

The kinetic coefficients determined by the standard procedure in [2, 18, 19], in contrast 
to case I, will be a function of the collisions of the molecules with the particles. In 
particular, for viscosity pgp and thermal conductivity %tp coefficients, when a i = i, we obtain 

K -i 

~gp = ~ t + 3na~(2)J (10) 

( ( ~ p = ~ t  l+4na~(2)] =~t  l + a  

(~z2(2) is a bracket integral identical to the integrals determined in [18], and a ~ i). 
The internal degrees of freedom do not affect coefficients ~gp and ltp, and for this reason 
they should coincide with the corresponding coefficients fo suspenslon of matter in gas 
consisting of a monoatomic gas and unexcited particles. Similar suspension of matter in 
gas was studied previously in [8], but with the generalized Chapman-Enskog method [21]. The 
following expression was obtained for the viscosity coefficient: 

, npr~ 8exp(--a ~)+ 8fl 2 + 8 - V  Q (11) 
~gp = ~g i + --h-- t2Q~ (2) 

The results of the calculations of the viscosity coefficients with (ii) are shown in 
Fig. i. Note that beginning with some values of temperature factor Y, the viscosity coeffi- 
cient becomes negative in a certain region of a change in the value of ~. This is observed 
even for small values of the ratio K/Ku, where the additions to the transfer coefficients 
caused by the presence of another phase should be small (~O(K/Ku)). 

We will attempt to explain what caused this situation. According to the generalized 
method, construction of a composite solution of the kinetic equations suitable for any values 
of ratio K/Ku is possible.* Since the concentrations of particles np and the other values 
contained in Ku (Ku = Ig/Zgp, l:gp = i/(~rp2np)) can change independently, ratio K/Ku can 

actually be arbitrary. Then applying the algorithm of the generalized method to the problem 
examined, we find [8] that the local equilibrium solution should be determined from the 
condition Jgg = 0 regardless of the value of K/Ku, t as in a pure monoatomic gas. As a con- 

sequence, in the principal approximation, the particles do not affect the parameters of 
the gas phase even for K/Ku > I, although exchange of the kinetic energy of the molecules 
with the surface of the particles takes place virtually after one collision. 

0 

-1- 

-2- 

0,01 

:=O, O O O f  

K/Ku =0, OO I 

Fig. 1 

*In gases with internal degrees of freedom, probability a of inelastic energy exchange [21] 
in molecular collisions plays the role of parameter K/Ku. The corresponding collision inte- 
grals are of the Boltzmann type. In the given case, the structure of JRP is slightly differ- 

-- n ent, but this is not an obstacle to the possible use of the generalized method, as demo - 
strated in [8]. 
%In the rigorous methods in [1-3, 22], the solution determined by the condition Jgg = 0 holds 
for small values of a or a ratio K/Ku, but it is also practically applicable for ~ ~ 1 in 
most cases. 
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Because of the physical impossibility of this situation, a thin transition layer of 
the order of magnitude of the mean free path in which Tg + Tp should arise, i.e., a region 
corresponding to kinetic conditions not described by hydrodynamic equations. In the rigorous 
methods based on distinct separation of the asymptotic scales, such conditions have either 
been studied separately [22] or are considered covered ground [2]. Separation into "fast" 
~ l and "slow" ~L processes (or into equilibrium and relaxation processes) can be classified 
with the Knudsen number K = I/L ~ i. A continuous change in any of them in the entire 
possible range means going from the scale of L to I or vice versa, i.e., it includes the 
condition where K = i. However, in the hydrodynamic statement, this transition is not 
possible without interruption. This also predetermined the practice of examining different 
asymptotic cases, including the so-called equilibrium and relaxation cases, in the study 
of gases with internal degrees of freedom [1-3, 16]. In the generalized method, the thin 
transitional layers are not explicit, but if necessary are included in the algorithm of 
the method in accordance with the basic goal - to obtain a continuous solution in the entire 
region of the change in the parameter. Physically, the discontinuity problem is formally 
transformed into a continuous problem, which also results in hydrodynamic equations with 
macroparameters which do not correspond to the real physical situation and generally speak- 
ing, in other transfer coefficients. 
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CONSIDERATION OF VARIABLE VISCOSITY IN THE DYNAMICS OF SOILS 

AND POROUS MULTICOMPONENT MEDIA 

G. M. Lyakhov UDC 624.131+539.215 

Analysis of tests indicates that the bulk viscosity of soils, rocks, ice, and snow 
is not a constant of the medium, but varies in the loading process. 

The model of a solid nonlinear viscoplastic multicomponent medium, intended to describe 
wave processes [i], is refined below by the introduction of variable bulk viscosity. It 
is assumed that the viscosity varies (increases) as the state of the medium shifts from 
a dynamic to a static bulk-compression diagram under load. With this approach, wave processes 
are described by a system of hyperbolic quasi-linear equations in partial derivatives, just 
as for constant viscosity. This makes it possible to solve a broad class of wave problems. 

I. Determination of Bulk Viscosity from Experimental Data. The variation in the bulk- 
viscosity coefficient qL as a function of the loading regime has been noted in many experi- 
mental studies. Lyakhov [2] indicates that the qL of a sandy soil increases by a factor of 
five as the rise time of the blast loading increases by a factor of three. In rocks [3], 
the viscosity increases by a factor of I0 as the duration of the load increases under the 
same stress level. At the same time, the viscosity decreases with increasing stress. For 
similar maximum stresses in loess and clayey soils, DL increases by several factors as the 
loading rate decreases [i, 4]. 

Let us examine the results of tests [5, 6] in which the spread velocity c and absorption 
decrement A of plane waves of different frequency f, created by a sinusoidal load in frozen 
soils and in ice, and from which it is possible to determine the viscosity, and the law 
governing its variation as a function of loading regime, were determined. 

The tests corresponded to small strains g ranging from 10 -7 to 5.10 -4 . In this region, 
the nonlinearity of the limiting compression diagrams and strain irreversibility can be 
neglected, and the model of a standard linear body can be used, if the viscosity is consid- 
ered constant. In the case of a uniaxial strain state, the equation of compression and 
unloading assumes the form 

ED ES = O, ( 1 . 1 )  

whe re  E D = cD=P0, and E s a r e  t h e  l i m i t i n g  dynamic  (when o + ~)  and s t a t i c  (when ~ § O) com- 

p r e s s i o n  m o d u l i ,  r e s p e c t i v e l y ,  ~ i s  a v i s c o s i t y  p a r a m e t e r ,  c D i s  t h e  wave v e l o c i t y  when f + 
~ ,  P0 i s  t h e  i n i t i a l  d e n s i t y  o f  t h e  medium, and o i s  t h e  s t r e s s  component  i n  t h e  d i r e c t i o n  
o f  wave p r o p a g a t i o n .  The f a c t o r  ~L i s  l i n k e d  t o  t h e  v i s c o s i t y  p a r a m e t e r  i n  t h e  f o l l o w i n g  
manner: 

NL = Es(ED -- Es)/ED~ = ED(? - -  1)/72~' ~ = E J E s "  ( 1 . 2 )  

During wave propagation, nonsteady oscillations, which convert gradually to steadyistate 
oscillations, develop in the medium. The extinction rate of the amplitude o of the steady- 
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